

Background

- Employer accounts suggest physics graduates are **deficient** in social and communicative skills [Sarkar et al., 2016].
- Despite widespread support for student development of science communication skills, implementation of relevant resources has been slow and highly localized.

Methods

Senior Seminar

(required course, one credit-hour)

- Randomly assigned peer evaluations per presentation
- **Treatment:** critical reflection [Girard et al., 2011]
- Control: assess engagement; distract from reflection
- End-of-class quiz on concepts from that day's presentations
- Presentations evaluated independently for research

N=49	N=1033
Presentations across	Peer evaluations; quiz
two semesters	question submissions

Results

			Measured	Established effect size	
Multimedia Design Principle	n_0	n ₁	effect size	[Mayer, 2020]	
Coherence (Co): Omit extraneous, seductive details.	671	362	0.14* ± 0.07	0.86	
Signaling (Sg): Visually guide learners through content organization.	782	251	0.13 ± 0.07	0.70	
Redundancy (Re): Avoid text that is redundant with narration or images.	657	376	-0.25*** ± 0.06	0.72	
Spatial Contiguity (SpCt): Place corresponding slide contents near each other.	222	811	-0.22** ± 0.08	0.82	
Modality (Md): Complement graphics with narration, not blocks of text.	453	580	0.030 ± 0.063	1.00	
Personalization (Pn): Use a conversational, informal style.	415	618	0.53*** ± 0.06	1.00	
Embodiment (Em): Augment instruction with dynamic, physical expression.	395	638	0.014 ± 0.064	0.58	
$^{*}n < 0.05^{\circ} *^{*}n < 0.01^{\circ} *^{**}n < 0.001$					

Sp24 students received four weeks of instruction while F23 students received none. Still, a one-sided Mann-Whitney *U* test **did not suggest improvement** in usage of CTML principles.

Limitations & future work

- Small sample size and restricted class continuity hinder generalization and detailed examination of confounders.
- Ongoing study of analogous two-credit-hour chemistry course may improve understanding of rigorous instruction and multiple presentation opportunities.

In a physics communication course, reflection and instruction affected <u>neither</u> presentation quality nor retention of concepts.

REFLECTING TO LEARN IN A
PHYSICS MULTIMEDIA COMMUNICATION COURSE