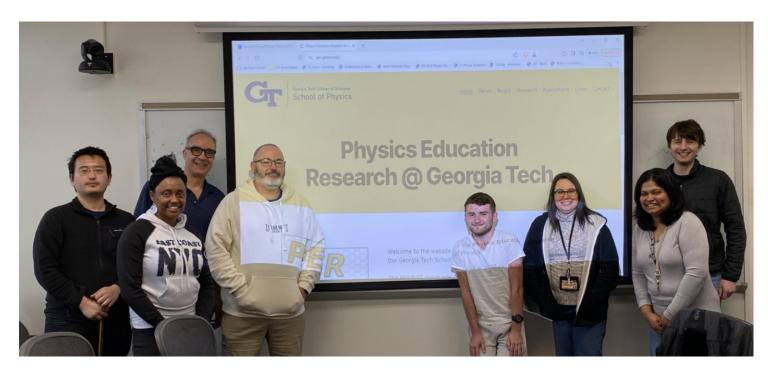


Reflecting to Learn in a Physics Multimedia Communication Course

Steven W. Tarr and Emily Alicea-Muñoz

SUMMER MEETING July 6 - 10 Boston, MA


Acknowledgements

Thank you to PER @ GT group members:

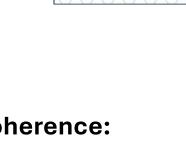
Dr. Emily Alicea-Muñoz Dr. Michael Schatz Dr. Edwin Greco Dr. Prabha Padukka Andrew Wu Anika Jones Dev Shah Abigail Creyts

Alex Ronemus

Thank you to collaborating instructors:

Dr. Colin Parker Dr. Itamar Kimchi Dr. Mary Peek Dr. Martin Jarrio Implementation of relevant science communication resources has been slow and highly localized.

- National organizations emphasize the importance of developing science communication skills in students.
- Still, employer accounts suggest physics graduates are **deficient** in social and communicative skills [Sarkar et al., 2016].
- High enrollment and limited class resources present **barriers** to providing students ample opportunities **to practice** presentation skills.



Adherence to CTML principles is a proxy for presentation quality.

- Cognitive Theory of Multimedia Learning (CTML) models visual & auditory processing [Mayer, 1997].
- Principles from CTML provide a framework for understanding **presentation quality**.
- Evaluate student presentations on **seven** principles.

Coherence: Omit extraneous details.

Signaling: Visually guide learners through content organization.

Students have dual roles in the physics communication course at GT.

Students as presenters

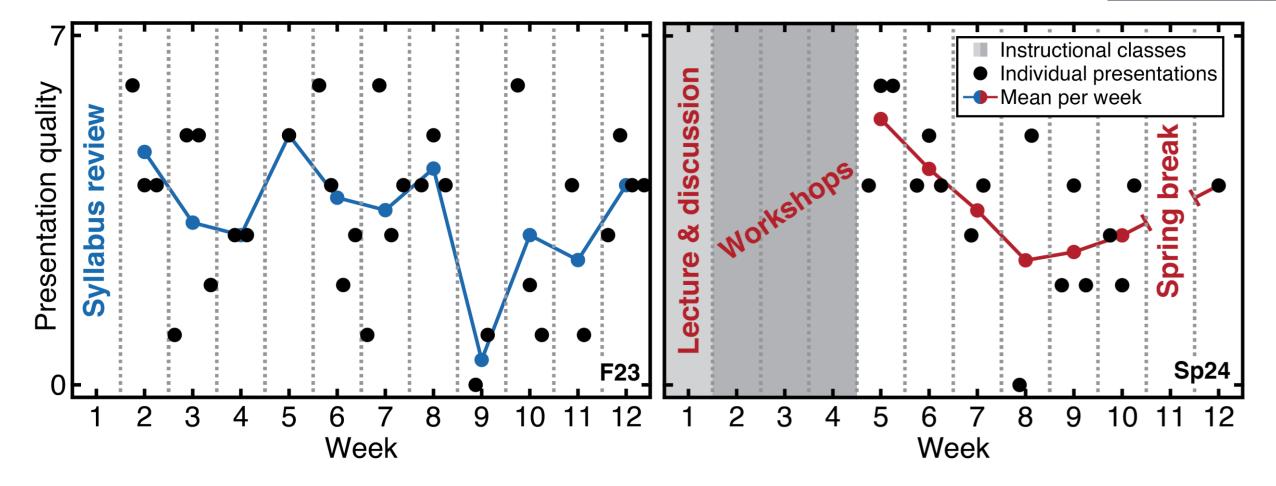
- Students have varied prior communication experience.
- Students present **once** per semester.
 - 8 min presentation + 2 min Q/A
 - Topics: research at GT, summer internship, upper-division course topic

Students as observers

- Randomly assigned peer evaluations per presentation
 - **Treatment:** reflection activity [Girard et al., 2011]
 - **Control:** assess engagement; distract from reflection
- End-of-class quiz on concepts from that day's presentations

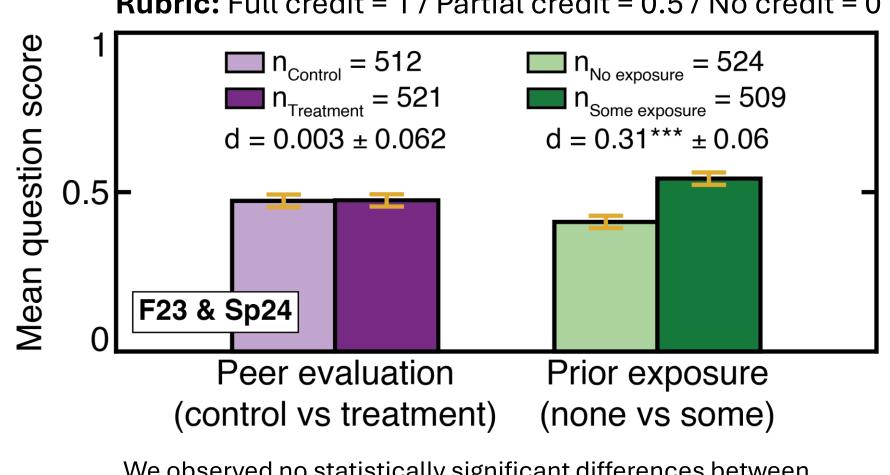
	F23 (Instructor 1)	Sp24 (Instructor 2)
Consent rate	32/42	17/20
Presentation rate	4 per class	3 per class
Presentation date	Self-selected	Randomized
Instruction	None	First 4 weeks

How do the dual roles interact?


Students as presenters

- Is presentation quality affected by...
 - ...reflection on peer presentations?
 - ...instruction on presentation standards?

Students as observers


- Are learning outcomes from peer presentations affected by...
 - ...reflection?
 - ...presentation quality?

Presentation quality appears unaffected by observation, reflection, and instruction on presentations.

Presentation quality as measured by CTML remained **roughly constant** throughout F23.

One-sided Mann-Whitney *U* test **does not suggest a significant improvement** due to four weeks of instruction in Sp24 (p = 0.38). Student quiz performance was linked more to prior exposure than in-class reflection.

Rubric: Full credit = 1 / Partial credit = 0.5 / No credit = 0

We observed no statistically significant differences between responses from students who filled either type of peer evaluation.

Lower and even reversed effect sizes corroborate common criticisms of CTML within PER.

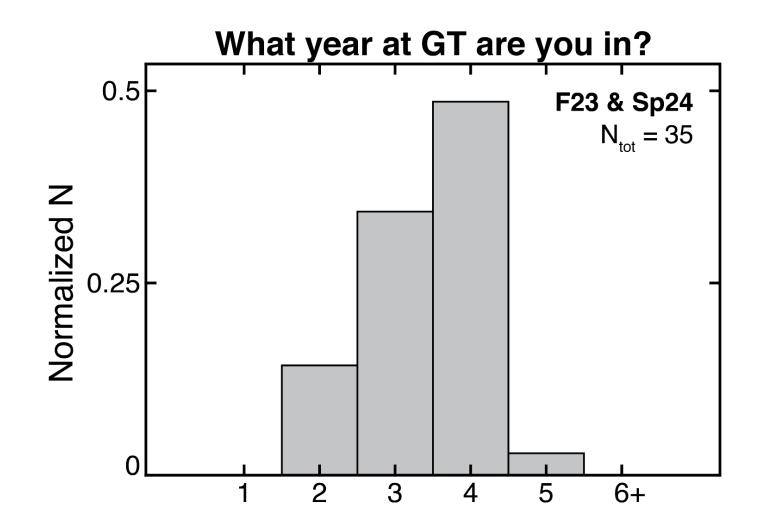
Multimedia Design Principle	n _{defy}	n _{obey}	Measured effect size (Cohen's d)	Established effect size [Mayer, 2020] (Cohen's d)
Redundancy: Avoid text that is redundant with narration or images.	29	20	$-0.25 \pm 0.06;$ p < 0.001	0.72

- CTML studies rarely occurred in classroom.
 - Prerecorded, heavily scripted presentations
 - Presentations lasted under 2 min; 8-10 s per slide
 - Psychology Subject Pool at UCSB

- Large intrinsic cognitive load in this course may reverse Redundancy principle.
 - PER emphasizes multiple overlapping visual representations [Opfermann et al., 2017].

For details of other principles, see: S. W. Tarr and E. Alicea-Muñoz, 2024 PERC Proceedings, **in review**. Reflection and instruction were insufficient for developing undergraduate physics presentation skills.

- Widespread support for the development of science communication skills is **incongruous** with our current academic environment.
- Within our study, student presentations seem **unaffected by** observation, reflection, and instruction on **peer presentations**.
- Audience retention and transfer were primarily affected by prior exposure to presentation content.
- CTML principles may require **amendments** specific to the physics classroom.


Let's chat! **PERC Poster B68** Poster Session 2.2 Wednesday, 8:50–9:30pm, Galleria

For more details, see: S. W. Tarr and E. Alicea-Muñoz, 2024 PERC Proceedings, **in review**.

Presenter: Steven W. Tarr steventarr@gatech.edu

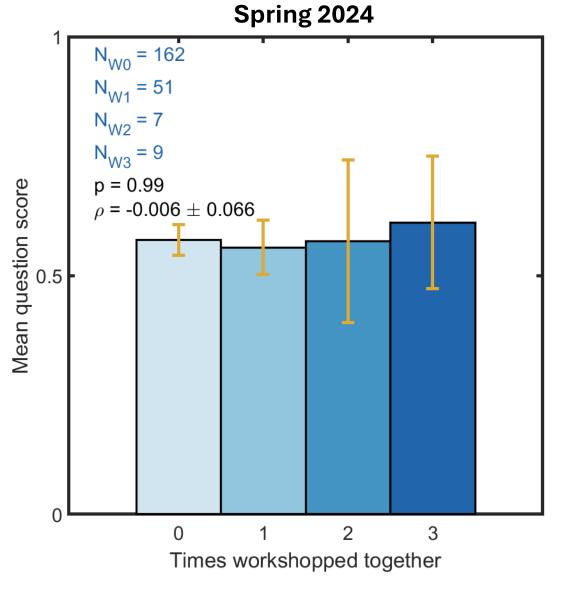
For group information, visit https://per.gatech.edu/

Seniors constitute the largest subset Senior Seminar students, but they do **not** constitute a majority.

Peer evaluations

Treatment form

2.

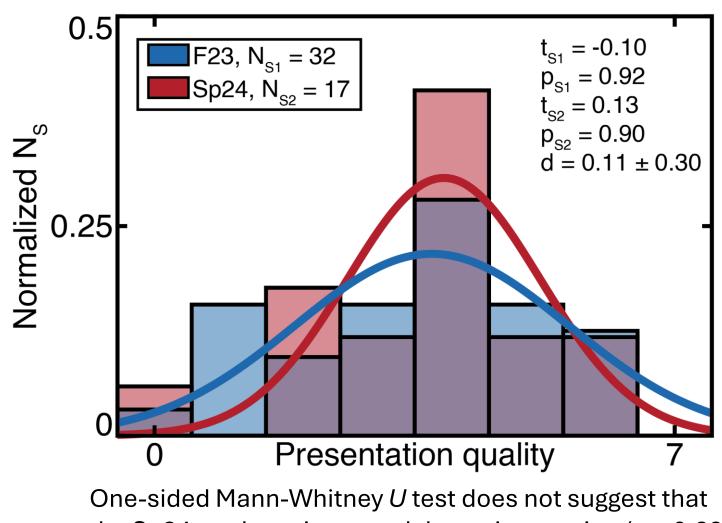

	Treatn	nent forr	n		Control form				NAAAA	
	Needs improvement	Just okay	Good	Excellent		Needs improvement	Just okay	Good	Excellent	
Presentation content					Voice was clear, audible, and well-modulated.					
Presentation quality					Graphics and on-screen text are legible.					
Have you encountered th College course other Research at Georgia Internship/REU Reading/Watching fr Other (please specify Please list two content ite	r than Senior Semina Tech (not in class) for my own interest(s	ar II		ll that apply.	Have you encountered the p College course other t Research at Georgia T Internship/REU Reading/Watching for Other (please specify) What has your experience	han Senior Semin fech (not in class) my own interest(s	ar II 5)			
1.	·				Please describe your level the experience(s) described	s (classroom or oth	herwise) you have	seen on similar	topics:	

Despite workshops largely focusing on quiz question choice and developing matching presentations, students who workshopped together did **not** significantly outperform others on their quizzes.

Kruskal-Wallis and Spearman's p tests do not show significant correlation between quiz performance and workshop group.

Fully correct

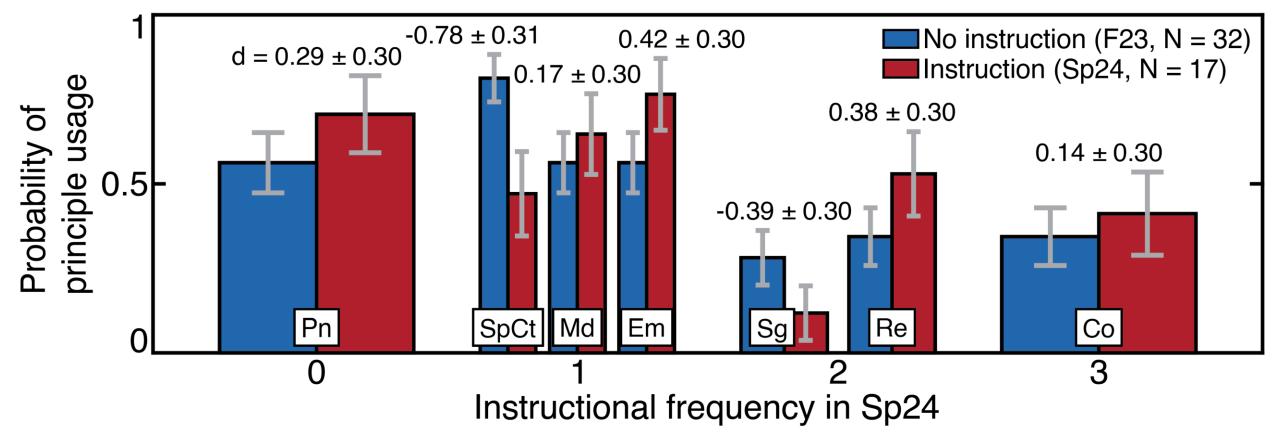
0.5 All weeks & questions N_{W0} = 79 Students who workshopped N_{W>0} = 150 0.4 together at least once were Normalized N 0.2 more likely to attempt an answer. However, these answers were more often fully incorrect. 0.1


No attempt

Spring 2024

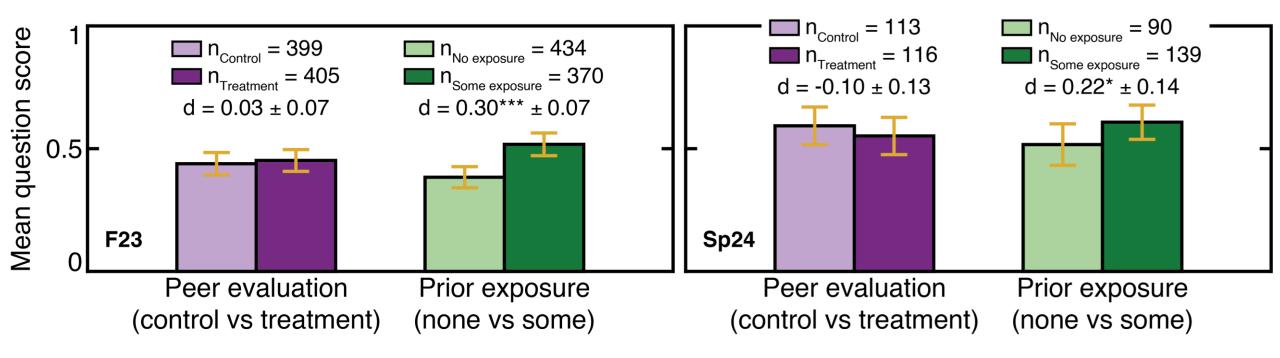
Partially correct

Fully incorrect


Instruction had an inconclusively small effect size on student presentation quality.

the Sp24 students improved due to instruction (p = 0.38).

We did not observe significantly greater CTML adherence following instruction.



A one-sided Mann-Whitney *U* test does not suggest student improvement due to instruction on individual CTML principles.

Overall effects on quiz performance are reproduced per semester.

Lower and even reversed effect sizes corroborate common criticisms of CTML within PER.

Multimedia Design Principle	n _{defy}	n _{obey}	Measured effect size	Established effect size [Mayer, 2020]
Coherence: Omit extraneous, seductive details.	31	18	$0.14^{*} \pm 0.07$	0.86
Signaling: Visually guide learners through content organization.	38	11	0.13 ± 0.07	0.70
Redundancy: Avoid text that is redundant with narration or images.	29	20	$-0.25^{***} \pm 0.06$	0.72
Spatial Contiguity: Place corresponding slide contents near each other.	15	34	$-0.22^{**} \pm 0.08$	0.82
Modality: Complement graphics with narration, not blocks of text.	20	29	0.030 ± 0.063	1.00
Personalization: Use a conversational, informal style.	19	30	$0.53^{***} \pm 0.06$	1.00
Embodiment: Augment instruction with dynamic, physical expression.	18	31	0.014 ± 0.064	0.58
	0.04			

p < 0.05; p < 0.01; p < 0.001