Developing a comprehensive graduate TA preparation program

Emily Alicea-Muñoz

mailto:ealicea@gatech.edu
@drealiceam

4 November 2022
The need for TA preparation

• Undergrads in large-enrollment intro physics classes can spend up to half of their in-class contact hours supervised by TAs (labs, studios, tutoring...)

• TAs have the potential to have large impact on undergrad student learning

• TAs are novice teachers, many have zero prior teaching experience

• TAs need preparation for teaching!
Research shows* that training improves TAs’ confidence and self-efficacy, enhances TAs’ pedagogical content knowledge, and can result in the adoption of learner-centered teaching strategies.

STEM TAs benefit from discipline-specific preparation, and teaching improves their methodological research skills.

TAs need to receive guidance on logistics such as classroom management and grading, and must have the opportunity to practice and receive feedback on their performance, both before and during their teaching.

* Alicea-Muñoz, PhD Dissertation, Chapter 2; Georgia Tech (2020) https://smartech.gatech.edu/handle/1853/62714
A majority of physics PhDs leave academia

Field of employment for new physics PhDs in potentially permanent positions, classes of 2014 to 2018

academic positions are only 13% of all new physics PhDs
New Perspective on GTA Preparation

• We want to produce GTAs who are motivated and effective teachers

• We also want to help GTAs develop transferable professional skills they can use outside the classroom

• 3P Framework* – to have a comprehensive program for GTA preparation that is useful and valuable for TAs in the classroom and beyond there must be full integration between:
 • Pedagogy – the methodology of teaching
 • Physics – content and PCK
 • Professional Development – transferable skills useful inside and outside academia

At GT Physics before 2013...

• TA training before semester:
 • General GTA Orientation (policies)
 • Meeting with GTA Supervisors (logistics)

• TA training during semester:
 • Weekly lab meetings and/or communication email (content)
 • Pedagogy seminars (outsourced)

Problems!

• Disconnect between pedagogy and content
• Lack of pedagogical reinforcement
• Lots and lots of complaining
• GTAs provided with no motivation
• No apparent relevance for professional goals
Physics GTA Preparation Course

- One credit, pass/fail, required for first-time GTAs (mostly first-year PhD students), offered every Fall semester
 - Over 200 grad students have participated since 2013

- Course design follows best practices for GTA preparation found in research literature

- Curriculum development follows a yearly cycle of implementation and revision, based on assessment data and self-reflection
Course Structure and Content

Orientation
(before semester starts)
1. Introduction & GT Policies
2. Teaching Physics
3. Classroom Management
4. Lab Simulation
5. Microteaching

(~15 hrs)

Follow-Up Meetings
(during Fall semester)
1. Grading
2. Midterm Evaluations & Time Management
3. Teaching Videos
4. Teaching and Research
5. Concluding Remarks

(~5 hrs)

Out of class activities: Classroom Observations, Workload Surveys, Mentoring Meetings
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Microteaching</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midterm Evaluations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classroom Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group Work</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student Motivation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classroom Observations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teaching Videos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peer Observations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exp. TA Observations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Learning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engaging Explanations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leading Discussions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prior Knowledge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teaching Feedback</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab Simulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Problem Solving</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preconceptions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Student Questions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expert/Novice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Being a Physics TA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Successful First Day</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faculty Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Management</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GT Policies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mentoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teaching Philosophy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leadership</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teaching and Research</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transferable Skills</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GTA Prep Curriculum: Things that work

Microteaching

- Short teaching practice in a safe environment, with 8-10 grad students max per session
- Each person picks an intro physics problem beforehand
- Participants arranged into two peer groups
- One person at a time facilitates for 10min, everyone else are students
- No lecturing allowed! Interactive engagement!
- Feedback provided to each TA by instructor and the two peer groups
- Debrief reflection essay on activity and feedback received
Lab Simulation

- Like microteaching, but in a lab environment
- TAs individually assigned one lab to teach, and in pairs assigned labs in which to be students; all lab materials available for all in class website
- Teaching pairs facilitate lab for 10 minutes
- Two rounds: mechanics (labs 1 and 2), then electromagnetism (labs 3 and 4)
- An instructor follows each TA to observe and give feedback
- SABOTAGE! Secretly planted bad student behaviors – TAs get REALLY into it and have fun!
Teaching Physics

- Important to discuss the pedagogical content knowledge necessary for teaching physics
- Emphasize differences between experts and novices – point out grad students are both
- Introduction to active learning, share results from physics education research
- Group activities to address misconceptions and problem-solving

Addressing Misconceptions
- Split up into three groups to work on these examples (for 10 minutes):
 - Example 1 (FCI)
 - Example 2 (PMCE)
 - Example 3 (BEMA)
- Think of reasons why students would pick the incorrect answers (what misconception do they have?)
- Come up with ways to address the misconceptions

Novice vs Expert

Categorization and Representation of Physics Problems by Experts and Novices

"Results from sorting tasks and protocols reveal that experts and novices begin their problem representations with expressively different problem categories. [...] Experts initially abstract physics principles to approach and solve a problem representation, whereas novices base their representation and approaches on the problem’s literal features."

Physics Education Research shows...

Learning Gain (FCI pre/post results)
- Traditional Lecture
- Active Learning
GTA Prep Curriculum: Things that work

OK / NOT-OK Game

- For discussion of academic policies (FERPA, sexual harassment, academic integrity, etc)
- Each TA given a card that says **OK** on one side and **NOT OK** on the other
- Scenario is read, each person votes (shows one side of the card), then correct answer is revealed
- Some scenarios are obvious and unanimous, while others are not and promote in-depth discussions
- TAs enjoy gamification of “boring” topics!

OK or NOT OK?

- A student tells a TA that he's here to pick up his roommate's graded exam, and it's OK because the roommate gave him a note with written permission
 - **OK**
 - **NOT OK**

 FERPA. Even if the roommate wrote a note giving permission, you're not supposed to give someone's graded work to someone else.

OK or NOT OK?

- A student approaches their TA to say that another student has been making explicit sexual comments, which makes them uncomfortable. The TA says it's probably just a joke, no big deal.
 - **OK**
 - **NOT OK**

 This is harassment, and the TA must stop it immediately. Tell TA supervisor, and may need to report it higher up the chain if it happens repeatedly.
GTA Prep Curriculum: Things that work

Classroom Observations

• Useful tool to assess effectiveness of TA training by seeing first-hand what the TAs do in the classroom
• Can use research-validated evaluation criteria or write your own as needed
• TAs receive on-time feedback for reflection and improvement
• Video recorded observations can be used for future TA training sessions

<table>
<thead>
<tr>
<th>N</th>
<th>GTA Evaluation Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Uses the first 10 minutes of studio/lab effectively</td>
</tr>
<tr>
<td>2</td>
<td>Speaks with a clear, audible, and well-modulated voice</td>
</tr>
<tr>
<td>3</td>
<td>At the board, the GTA’s handwriting is legible</td>
</tr>
<tr>
<td>4</td>
<td>Shows enthusiasm for physics and tries to motivate students</td>
</tr>
<tr>
<td>5</td>
<td>Checks for student understanding by asking probing questions (without sounding condescending)</td>
</tr>
<tr>
<td>6</td>
<td>Helps students develop the necessary problem-solving skills and coaches them without giving away the answers</td>
</tr>
<tr>
<td>7</td>
<td>When students are working in groups, the GTA makes sure that all group members are actively participating</td>
</tr>
<tr>
<td>8</td>
<td>Answers procedural questions quickly and efficiently</td>
</tr>
<tr>
<td>9</td>
<td>Spreads their time reasonably among the various groups of students in the lab/classroom</td>
</tr>
<tr>
<td>10</td>
<td>Comes to the lab/studio prepared and can think on their feet if there’s a need for troubleshooting</td>
</tr>
</tbody>
</table>
Things that don’t work

Caveat: your mileage may vary! These were disasters for us, but they may work for you

• **Peer Observations** – TAs don’t feel knowledgeable enough to give their peers useful feedback ... OR, TAs feel their peers are not knowledgeable enough to give them feedback

• **Experienced TA Observations** – Logistics! Do you have enough experienced TAs teaching the same classes as the first-time TAs?

• **Teaching Philosophy** – If the majority of your grad students plan on going to industry, they may feel this is useless
TA preparation DOES work!

Our GTAs feel **better prepared** for teaching after participating in the Orientation

Our GTAs adopt more **learner-centered** approaches to teaching after participating in the GTA prep course

For more details, see: Alicea-Muñoz, PhD Dissertation, Georgia Tech (2020)
There is no “one-size-fits-all” approach to GTA preparation.

Lots of work has been done, but most of it focuses on GTAs as future faculty – we shouldn’t ignore the ones who leave academia!

The 3P Framework can provide universal guidance that ensures broader professional development as an integral part of GTA preparation.

Generalized to other fields: 3P → PDP (pedagogy, discipline-specific content, professional development)
Our Physics GTA Preparation course successfully integrates pedagogy, physics, and professional development.

The course satisfies the principles for best practices in GTA preparation, and is effective at preparing GTAs for their teaching roles.

Our method of curriculum development, the 3P Framework, can provide universal guidance for GTA preparation that is useful for graduate students no matter what their career goals are.

Current project: I want to know more about the GTA preparation strategies used in other institutions. Would you like to participate in my National Survey of Physics GTA Preparation? Scan this to get included in the contact list!