

¹School of Physics, Georgia Institute of Technology, Atlanta, Ga 30071 • ²School of Psychology, Georgia Institute of Technology, Atlanta, Ga 30071 ³Department of Physics, North Carolina State University, Raleigh, NC 27695 contact email: caballero@gatech.edu • web: www.physics.gatech.edu/gtper

Introductory Mechanics at Georgia Tech

Two Courses taught at Tech

A "standard" course based on Knight (TRAD)

• The Matter and Interactions course based on Chabay and Sherwood (M&I)

Demographics

- ~800 students per semester take introductory mechanics
- 83% engineering, 17% science majors
- Large classroom setting (150-250 students)
- Labs/Recitations (15-25 students)

The "Standard" Course (TRAD)

• Covers the usual topics (projectile motion, friction, statics, circular motion, etc.)

• Usual organization of topics (kinematics, dynamics, energy, angular momentum, etc.)

• Emphasis placed on force and motion concepts: constant force motion, kinematic equations, free body diagrams

Boundary Conditions

- 3 hour lecture (with "clicker" questions)
- 2 hour laboratory, 1 hour recitation
- Online homework system Mastering Physics

The Matter and Interactions Course (M&I)

• Emphasizes on a principle based approach (Impulse-Momentum Theorem, Energy Principle, Angular Momentum Principle)

Introduces the ball and spring model of solids and connects

- microscopic to macroscopic measurements
- Uses modern tools (simulation and visualization)

- Boundary Conditions
- 3 hour lecture (with "clicker" questions)
- 3 hour combined lab/recitation
- Online homework system WebAssign

Assessing Performance

Courses have markedly different curricula (course content, structure)

- Comparison is a complex undertaking
- Proper comparison requires multiple metrics, e.g.
- Standardized assessments
- Student interviews (think aloud)
- Common final exam problems
- Complex (non-standard) problems

 Standardized assessments require small infrastructure, easy to score

Performance of 5000 Students in Introductory Mechanics

Marcos D. Caballero¹, Keith R. Bujak², Matthew A. Kohlmyer³, M. Jackson Marr², Richard Catrambone², and Michael F. Schatz¹

Results from Standardized Assessment

Force Concept Inventory (FCI)

- 30 item multiple-choice test covers force and motion
- Emphasizes constant force motion and contains strong
- distractors
- Initial Conditions
- Essential demographic data not statistically different
- Pedagogy (interactivity, presentation, etc.) very similar

Solution	TRAD (%)	M&I (%)
Determined accel. was constant	0	36
"Mass doesn't matter"	60*	21
Use of kinematic equations	40	0
Recall from previous exercise	20	0

Further Investigation

NSF

Suggestions about from Transcript Analysis

M&I students fail to employ the Impulse-Momentum

Theorem (NO mention of momentum at all)

• M&I students confuse components of the net force and forces associated with agents

 Both groups revert to naive or incorrect notions of force and motion

• Both groups revert to (often, incorrect/incomplete) memory of high school physics

Homework Questions

 Both courses require students to complete 3 homework assignments per week

• Questions covering FCI topics appearing in homework sets were counted

Larger fraction of standard course items cover FCI topics

• TRAD ~30% vs M&I ~10%

Efforts in Numerical Computation and Visualization

Beginning in Spring 2009, homeworks using the computer modeling component have been developed.

Students are exposed to finite differencing early on

- Create trajectory
- Determine average velocity
- Determine average net force
- Visualize trajectory, velocity and force vectors.

Student submitted work

Object speeding up (1D)

Object slowing down (1D)

Concluding Remarks

TRAD students outperform M&I students on in-class FCI

• Think aloud study identifies M&I students' shortcomings

 Homework questions suggest exposure to FCI-like items in M&I is limited compared to standard course

Other metrics currently under evaluation

 Development of materials to foster M&I students' fluency on force and motion items has begun

More info: www.physics.gatech.edu/gtper