Implementing and Assessing a New Introductory Physics Course at Georgia Tech

Matthew Kohlmyer¹ Michael Schatz¹ Richard Catrambone² M. Jackson Marr²

Georgia Institute of Technology ¹School of Physics ²School of Psychology

Intro Physics at Georgia Tech

- Large enrollment (>1700 students per semester, total)
- Large lectures (150-200 students, 3 hr/wk)
- Lab sections (20 students, 3 hr/wk)
- Problems:
 - GPA significantly lower than other intro courses
 - High D/F/W rate (as high as 25%)
 - Unpopular with students
 - External review committee criticized structure, outcomes of intro courses

Issues with traditional intro physics

- Lack of modern content
 - No 20th century physics
 - Macroscopic systems—no atoms!
- Incomplete or ineffective approach to problem-solving
 - Equation-hunting & problem-matching
 - No computer modeling
- Inadequate for preparing future scientists and engineers
 - Nanotechnology, materials science, bioengineering
 - ABET curriculum criteria, 2008-09:
 - Analytic, experimental, and *computational* methods emphasized by several programs

New physics course

- GT School of Physics using *Matter & Interactions* (M&I) curriculum
 - Modernize course content
 - Help improve course outcomes

Matter & Interactions

(R. Chabay & B. Sherwood, Wiley, 2007)

- Fundamental principles
- Microscopic structure of matter
- Coherent framework (including 20th century physics)
- Computer modeling
 - VPython: Programming language that easily allows for 3D graphics
 - Students model a wide variety of different systems

Implementation

- Gradual ramp up
- Summer 06:
 - 1 pilot section of 1st semester mechanics, 40 students
- Fall 08:
 - 2 sections of M&I mech. (300 students total)
 - 3 sections of M&I E&M (450 students total)
 - Nearly half of the total intro enrollment
- Increase in faculty adoption
 - Apprenticeship, co-teaching
- M&I popular with students
 - Courses well-subscribed, fill quickly

Assessment

- Compare student performance: M&I vs. traditional course
- Focused mostly on overlap of content between M&I and traditional
- Methods:
 - Standardized tests

Focus on E&M

- Common exam problems
- Interview study

Assessing E&M courses

- Brief E&M Assessment (BEMA)
 - Standardized test
 - Multiple choice
 - Qualitative and short quantitative questions
 - Covers topics common to both M&I and traditional course
- Administer "pre-test" at beginning of course, "post-test" at end, measure gains

BEMA Pre-test results

Multiple lecture sections from Fall 06 to Fall 07

BEMA Post-test results

Multiple lecture sections from Fall 06 to Fall 07

BEMA: Post-test results by section

BEMA: Post-test results by section

Assessing mechanics

- More complex task
 - Less overlap between M&I and traditional course content than E&M: what is a fair comparison?
- M&I: lower gains on standardized assessment
 - Assessment emphasizes more traditional problem types
 - M&I students may need more practice applying fundamental principles to these systems
- Assessing M&I specific content
 - Substantial gains on M&I specific energy assessment
 - Complex problems

Summary

- E&M
 - M&I outperforming traditional course in student understanding of basic E&M topics
- Mechanics
 - Complexity in making direct comparisons
 - More work is needed to shore up M&I students' understanding of more traditional topics
- Future assessment
 - "Think aloud" protocol study: examine in more detail student reasoning on
 - Broader impact: effect on future coursework, complex problemsolving skills

Acknowledgments

- Danny Caballero, GT School of Physics
- Keith Bujak, GT School of Psychology
- Collaborators at NC State, Purdue

Common exam problems

- Several common final exam problems have been given to both M&I and traditional courses
- Mechanics: M&I and traditional classes perform on par
 - Note that common questions have been biased toward more traditional material to be fair to traditional course
- E&M: M&I shows better performance on complex problems (e.g. Faraday's Law of Induction problem)
 - Note M&I and trad. E&M have more overlap in classes of problems covered

Force Concept Inventory

- FCI gains for M&I course are *worse* than for traditional course
 - Normalized gain: Fraction of possible gain from pre to post:
 - g = (post% pre%) / (100% pre%)
 - Traditional course at Georgia Tech: <g> ranges from 0.35 to 0.5
 - M&I course: <g> about 0.2
- Possible reasons
 - FCI: places emphasis on 2-D constant acceleration kinematics
 - M&I: more emphasis on impulse and momentum, less on acceleration
- Possible solution—implication for instruction
 - Include more examples of applying fundamental principles in more traditional problems

Implementation

- Faculty adoption
 - Different course content and structure: potential barrier
 - Apprenticeship model
 - Several new faculty members were convinced to try M&I
 - Worked closely with veterans
 - Summer 07: Co-taught M&I E&M with veteran faculty member
 - Reactions from faculty new to M&I have been very positive
 - By the end of Fall 2008, the GT School of Physics will have 6 faculty experienced in *M&I*

Common final exam problem: traditional and M&I E&M courses, Spring 07.

A uniform magnetic field is present in a circular region of radius 6 cm. In this region at any given time, the magnetic field may be pointing directly out of the page (in the +z direction), directly into the page (in the -z direction), or it may be zero. The z-component of the magnetic field in this region changes with time according to the function $B_z=Kt^2-P$, where t is time, K= 0.12 T/s², and P = 3.0 T. Outside of the 6 cm radius, the magnetic field is always zero. A thin metal ring of radius 11 cm is concentric with the region of magnetic field. The ring has a resistance of 1.3 x 10–3 Ω .

(a) At time t = 3 s, find the magnitude of the induced current in the metal ring.

(b) At time t = 3 s, find the direction of the induced current in the metal ring (clockwise, counter-clockwise, or zero), and briefly explain your reasoning.

Common E&M final exam problem, Spring 07	Trad. EM sec. N=157	<mark>M&I EM sec.</mark> N=152
Completely correct (magnitude & direction)	17%	28%
Used correct approach to find magnitude (w/ possible minor errors)	32%	51%
Used wrong principle to find magnitude	43%	15%
Correct direction w/ correct reasoning	36%	57%

Setup

3D graphics	from visual import *
Create objects, give initial pos.	<pre>planet=sphere(pos=(0,0,0),radius=3e7,</pre>
Constants	planet.m=6e24 moon.m=7.4e22 G=6.67e-11
Initial momentum	<pre>speed=2*pi*4e8/(29*24*3600) moon.p=moon.m*vector(0,speed,0)</pre>
Timestep Reset time	deltat=2.5e3 t=0

Physics loop

	while t<28*24*60*60:
Rel. pos. vector & unit vector	r=planet.pos-moon.pos rmag=sqrt(r.x**2 + r.y**2 + r.z**2) rhat=r/rmag
Grav. force vector	Fmag=G*moon.m*planet.m/rmag**2 F=Fmag*rhat
Update p Update pos.	<pre>moon.p=moon.p+F*deltat moon.pos=moon.pos+moon.p/moon.m*deltat</pre>
Draw trail Update time	<pre>moon.trail.append(pos=moon.pos) t=t+deltat</pre>

"Think-aloud" protocol study

- Ongoing project: to examine in more detail why M&I students have difficulty with FCI
- Volunteers from M&I and traditional courses work on FCI problems in an individual interview setting while saying out loud what comes to mind
- Data collected, currently being analyzed