Implementing and Assessing a New Introductory Physics Course at Georgia Tech

Matthew Kohlmyer1
Michael Schatz1
Richard Catrambone2
M. Jackson Marr2

Georgia Institute of Technology
1School of Physics
2School of Psychology

Supported by NSF DUE-0618519 and Georgia PRISM, Atlanta Metro Region
Intro Physics at Georgia Tech

• Large enrollment (>1700 students per semester, total)
• Large lectures (150-200 students, 3 hr/wk)
• Lab sections (20 students, 3 hr/wk)
• Problems:
 – GPA significantly lower than other intro courses
 – High D/F/W rate (as high as 25%)
 – Unpopular with students
 – External review committee criticized structure, outcomes of intro courses
Issues with traditional intro physics

• Lack of modern content
 – No 20th century physics
 – Macroscopic systems—no atoms!

• Incomplete or ineffective approach to problem-solving
 – Equation-hunting & problem-matching
 – No computer modeling

• Inadequate for preparing future scientists and engineers
 – Nanotechnology, materials science, bioengineering
 – ABET curriculum criteria, 2008-09:
 • Analytic, experimental, and \textit{computational} methods emphasized by several programs
New physics course

- GT School of Physics using *Matter & Interactions* (M&I) curriculum
 - Modernize course content
 - Help improve course outcomes
Matter & Interactions
(R. Chabay & B. Sherwood, Wiley, 2007)

- Fundamental principles
- Microscopic structure of matter
- Coherent framework (including 20th century physics)
- Computer modeling
 - VPython: Programming language that easily allows for 3D graphics
 - Students model a wide variety of different systems
Implementation

- Gradual ramp up
- Summer 06:
 - 1 pilot section of 1st semester mechanics, 40 students
- Fall 08:
 - 2 sections of M&I mech. (300 students total)
 - 3 sections of M&I E&M (450 students total)
 - *Nearly half* of the total intro enrollment
- Increase in faculty adoption
 - Apprenticeship, co-teaching
- M&I popular with students
 - Courses well-subscribed, fill quickly
Assessment

- Compare student performance: M&I vs. traditional course
- Focused mostly on overlap of content between M&I and traditional
- Methods:
 - Standardized tests
 - Common exam problems
 - Interview study

Focus on E&M
Assessing E&M courses

• Brief E&M Assessment (BEMA)
 – Standardized test
 – Multiple choice
 – Qualitative and short quantitative questions
 – Covers topics common to both M&I and traditional course

• Administer “pre-test” at beginning of course, “post-test” at end, measure gains
BEMA Pre-test results
Multiple lecture sections from Fall 06 to Fall 07

M&I mean=26%
Trad. mean=25%
BEMA Post-test results
Multiple lecture sections from Fall 06 to Fall 07

Trad. mean=46.2%
N=1246

M&I mean=58.2%
N=612
BEMA: Post-test results by section

- 11 sections 5 different instructors
- 5 sections 4 different instructors
BEMA: Post-test results by section

- **Traditional**: Two very good instructors

 - Means: “Good” trad.=51.6%
 M&I=58.2%

 - Difference is still statistically significant (p<<0.01)
Assessing mechanics

• More complex task
 – Less overlap between M&I and traditional course content than E&M: what is a fair comparison?

• M&I: lower gains on standardized assessment
 – Assessment emphasizes more traditional problem types
 – M&I students may need more practice applying fundamental principles to these systems

• Assessing M&I specific content
 – Substantial gains on M&I specific energy assessment
 – Complex problems
Summary

• E&M
 – M&I outperforming traditional course in student understanding of basic E&M topics

• Mechanics
 – Complexity in making direct comparisons
 – More work is needed to shore up M&I students’ understanding of more traditional topics

• Future assessment
 – “Think aloud” protocol study: examine in more detail student reasoning on
 – Broader impact: effect on future coursework, complex problem-solving skills
Acknowledgments

- Danny Caballero, GT School of Physics
- Keith Bujak, GT School of Psychology
- Collaborators at NC State, Purdue
Common exam problems

• Several common final exam problems have been given to both M&I and traditional courses

• Mechanics: M&I and traditional classes perform on par
 – Note that common questions have been biased toward more traditional material to be fair to traditional course

• E&M: M&I shows better performance on complex problems (e.g. Faraday’s Law of Induction problem)
 – Note M&I and trad. E&M have more overlap in classes of problems covered
Force Concept Inventory

• FCI gains for M&I course are worse than for traditional course
 – Normalized gain: Fraction of possible gain from pre to post:
 \[g = \frac{\text{post}\% - \text{pre}\%}{(100\% - \text{pre}\%)} \]
 – Traditional course at Georgia Tech: \(<g>\) ranges from 0.35 to 0.5
 – M&I course: \(<g>\) about 0.2

• Possible reasons
 – FCI: places emphasis on 2-D constant acceleration kinematics
 – M&I: more emphasis on impulse and momentum, less on acceleration

• Possible solution—implication for instruction
 – Include more examples of applying fundamental principles in more traditional problems
Implementation

• Faculty adoption
 – Different course content and structure: potential barrier
 – Apprenticeship model
 • Several new faculty members were convinced to try M&I
 • Worked closely with veterans
 • Summer 07: Co-taught M&I E&M with veteran faculty member
 – Reactions from faculty new to M&I have been very positive
 – By the end of Fall 2008, the GT School of Physics will have 6 faculty experienced in \textit{M&I}
A uniform magnetic field is present in a circular region of radius 6 cm. In this region at any given time, the magnetic field may be pointing directly out of the page (in the $+z$ direction), directly into the page (in the $-z$ direction), or it may be zero. The z-component of the magnetic field in this region changes with time according to the function $B_z = Kt^2 - P$, where t is time, $K = 0.12 \text{T/s}^2$, and $P = 3.0 \text{T}$. Outside of the 6 cm radius, the magnetic field is always zero. A thin metal ring of radius 11 cm is concentric with the region of magnetic field. The ring has a resistance of $1.3 \times 10^{-3} \Omega$.

(a) At time $t = 3 \text{s}$, find the magnitude of the induced current in the metal ring.

(b) At time $t = 3 \text{s}$, find the direction of the induced current in the metal ring (clockwise, counter-clockwise, or zero), and briefly explain your reasoning.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Completely correct (magnitude & direction)</td>
<td>17%</td>
<td>28%</td>
</tr>
<tr>
<td>Used correct approach to find magnitude (w/ possible minor errors)</td>
<td>32%</td>
<td>51%</td>
</tr>
<tr>
<td>Used wrong principle to find magnitude</td>
<td>43%</td>
<td>15%</td>
</tr>
<tr>
<td>Correct direction w/ correct reasoning</td>
<td>36%</td>
<td>57%</td>
</tr>
</tbody>
</table>
3D graphics

Create objects, give initial pos.

Constants

Initial momentum

Timestep

Reset time

from visual import *

planet=sphere(pos=(0,0,0),radius=3e7,
 color=color.green)

moon=sphere(pos=(3.84e8,0,0),radius=2e7,
 color=color.blue)

moon.trail=curve(color=moon.color)

planet.m=6e24
moon.m=7.4e22
G=6.67e-11

speed=2*pi*4e8/(29*24*3600)
moon.p=moon.m*vector(0,speed,0)

deltat=2.5e3

i=0
Physics loop

while $t < 28 \times 24 \times 60 \times 60$:

$r = \text{planet.pos} - \text{moon.pos}$

$rmag = \sqrt{r.x^2 + r.y^2 + r.z^2}$

$rhat = r / rmag$

$Fmag = G \times \text{moon.m} \times \text{planet.m} / rmag^2$

$F = Fmag \times rhat$

$\text{moon.p} = \text{moon.p} + F \times \text{deltat}$

$\text{moon.pos} = \text{moon.pos} + \text{moon.p} / \text{moon.m} \times \text{deltat}$

$\text{moon.trail}.append(pos = \text{moon.pos})$

$t = t + \text{deltat}$
“Think-aloud” protocol study

- Ongoing project: to examine in more detail why M&I students have difficulty with FCI
- Volunteers from M&I and traditional courses work on FCI problems in an individual interview setting while saying out loud what comes to mind
- Data collected, currently being analyzed