A Tale of Two Curricula: Performance of 2000 E&M Students on the BEMA

Danny Caballero1, Mike Schatz1, Richard Catrambone2, Jack Marr2, Ruth Chabay3, Matt Kohlmyer3, Bruce Sherwood3, Lin Ding4, and Mark Haugan5

1School of Physics, Georgia Institute of Technology
2School of Psychology, Georgia Institute of Technology
3Department of Physics, North Carolina State University
4Department of Physics, The Ohio State University
5Department of Physics, Purdue University

March 10, 2009
Comparing Electromagnetism Curricula

Brief E&M Assessment (BEMA)

- Standardized Multiple Choice Test (31 questions)
- Qualitative and short quantitative questions
- Topics: Electrostatics (ES), DC Circuits (DC), Magnetostatics (MS), Faraday’s Law and Induction (FL)
- Items common to both Matter and Interactions (M&I) and Traditional (TRAD) course
A Tale of Two Curricula: Performance of 2000 E&M Students on the BEMA

The Eye Test

Summary of Results

All Institutions

Comparison of Post-test Scores

Comparison of Normalized Gains

Raw Gain, \(G = \text{Post}\% - \text{Pre}\% \)

Normalized Gain, \(g = \frac{G}{(100\% - \text{Pre}\%)} \)

M&I outperforms TRAD at All Institutions
A Tale of Two Curricula: Performance of 2000 E&M Students on the BEMA

The Eye Test

GT Performance

Distribution of BEMA Scores - Georgia Tech

Pre-test

\[\bar{X}_{\text{MI}} = 25.9\%, \quad \bar{X}_{\text{TRAD}} = 24.8\% \]

\[N_{\text{MI}} = 321, \quad N_{\text{TRAD}} = 1319 \]

Post-test

\[\bar{X}_{\text{MI}} = 58.2\%, \quad \bar{X}_{\text{TRAD}} = 46.1\% \]

\[N_{\text{MI}} = 612, \quad N_{\text{TRAD}} = 1246 \]
A Tale of Two Curricula: Performance of 2000 E&M Students on the BEMA

The Eye Test

Purdue Performance

Distribution of BEMA Scores - Purdue

Pre-test
\[\bar{X}_{MI} = 31.7\%, \, \bar{X}_{TRAD} = 27.2\% \]
\[N_{MI} = 76, \, N_{TRAD} = 78 \]

Post-test
\[\bar{X}_{MI} = 66.1\%, \, \bar{X}_{TRAD} = 43.2\% \]
\[N_{MI} = 76, \, N_{TRAD} = 78 \]
A Tale of Two Curricula: Performance of 2000 E&M Students on the BEMA

The Eye Test

NCSU and CMU Performance

Distribution of BEMA Scores - NCSU and CMU

NCSU Post-test

$\bar{X}_{MI} = 49.7\%, \bar{X}_{TRAD} = 35.0\%$

$N_{MI} = 79, N_{TRAD} = 48$

CMU Post-test

$\bar{X}_{MI} = 55.6\%, \bar{X}_{TRAD} = 41.6\%$

$N_{MI} = 73, N_{TRAD} = 116$
Post-test BEMA Results by Section at GT

\[\bar{X}_{MI} = 58.2\% \quad \bar{X}_{TRAD} = 46.1\% \]

Large variation for TRAD (pedagogy, instructor)
A Tale of Two Curricula: Performance of 2000 E&M Students on the BEMA

The Eye Test

Sectional Analysis

Post-test BEMA Results by Section at GT

Consider TRAD Instructors using Active Engagement, i.e. “clickers” (Sections T3,T4,T8,T9,T10,T11)

TRAD Instructors using “clickers”, $\bar{X}_{\text{TRAD}} = 51.3\%$
A Tale of Two Curricula: Performance of 2000 E&M Students on the BEMA

The Eye Test

Sectional Analysis

Post-test BEMA Results by Section at NCSU

\[
\bar{X}_{MI} = 49.0\% \quad \bar{X}_{TRAD} = 35.0\%
\]

Superior performance by M&I

Used Controlled Laboratory study, Small N
Computing Differences in Performance

Compare Performance per Question

- Performance is gauged by Raw Gain
 \[G = \text{Post}\% - \text{Pre}\% \]

- Questions can be grouped by Topic

Computing Fractional Differences

- Overall Difference, \(\Delta G = G_{\text{MI}} - G_{\text{TR}} \)
- Item Difference, \(\Delta G_i = G_{i,\text{MI}} - G_{i,\text{TR}} \)
- Fractional Difference, \(\Delta G_i / \Delta G \)
A Tale of Two Curricula: Performance of 2000 E&M Students on the BEMA

The Eye Test

Item Analysis

Difference in Performance per Question

Fractional Difference illustrates Strengths of M&I Curriculum

Electrostatics (ES), DC Circuits (DC), Magnetostatics (MS), Faraday’s Law (FL)
Electromagnetism Retention Study

M&I Students perform better than TRAD
Even 26-155 Weeks after course

Controlled Laboratory Setting (CMU)

\[N_{MI} = 73, \quad N_{TRAD} = 116 \]
Conclusions

- BEMA Post-tests scores significantly higher for M&I (Even compared against TRAD sections using “clickers”)
- M&I outperforms across topics (Electrostatics, DC circuits, Magnetostatics, Faraday’s Law)
- M&I very effective with Magnetostatics and Faraday’s Law (difficult concepts, highly abstract)
- M&I students retain E&M knowledge longer (CMU Retention Study)
- Incoming classes are the same (Demographics: GPA, Course GPA, SATs & Pre-test Scores)