Implementing Curricular Reform in a Large Lecture Course at Georgia Tech

M.D. Caballero1, K.R. Bujak2, M.J. Marr2, R. Catrambone2, M.A. Kohlmyer3 and M.F. Schatz1

1School of Physics, Georgia Tech
2School of Psychology, Georgia Tech
3Department of Physics, NC State

Supported by Georgia PRISM (Partnership for Reform in Science and Mathematics) by the NSF (DUE-0942076, DUE-0618519) in collaboration with North Carolina State University (DUE-0618504) and Purdue University (DUE-0618647)
Introductory Physics @ Georgia Tech

+ Two-semester sequence
 Semester 1—Mechanics, Semester 2—E&M

+ ~1600 students per semester
+ 83% engineering, 17% science majors
+ Three lecture hours per week
 (200 students per lecture section)
+ One weekly lab/recitation (3 contact hours)
 (20 students per lab/recitation section)
Shortcomings of Traditional Curriculum

+ Content unchanged for decades
 - 19th century (or earlier) concepts
 - Focus on analytic solutions of special cases

+ Difficulties at GT
 - GPA lower than other intro courses
 - High D/F/W rate (as high as 25%)
 - Unpopular with students
 - External review criticized structure, outcomes
Reform Curriculum: Matter and Interactions (M&I)
(R. Chabay & B. Sherwood, Wiley, 2010)

Modern content
+ Fundamental principles
+ Atoms and structure of matter
+ Relativity and quantum physics
+ Macro/micro connections

Modern tools/techniques
+ Computer modeling
Infrastructure Preparation

+ Local expert: Hire Postdoc (1/06-9/08)

+ Train Teaching Assistants
 (Spring 06, on-going)

+ Laboratory Equipment Purchase/Construction
 (Spring 06, Fall 07)
Faculty Preparation: Apprenticeship Model

+ Junior faculty---pair with experienced instructor, provide logistical support.

+ Senior faculty---same plus financial incentive
Gradual Implementation

<table>
<thead>
<tr>
<th>Semester</th>
<th>M&I Semester 1</th>
<th>M&I Semester 2</th>
<th>Faculty w/M&I experience</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer 06</td>
<td>40 students</td>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>Fall 06</td>
<td>120 students</td>
<td>45 students</td>
<td>1</td>
</tr>
<tr>
<td>Spring 07</td>
<td>200 students</td>
<td>150 students</td>
<td>2</td>
</tr>
<tr>
<td>Summer 07</td>
<td>None</td>
<td>150 students</td>
<td>3</td>
</tr>
<tr>
<td>Fall 07</td>
<td>150 students</td>
<td>300 students</td>
<td>4</td>
</tr>
<tr>
<td>Spring 08</td>
<td>300 students</td>
<td>300 students</td>
<td>4</td>
</tr>
<tr>
<td>Summer 08</td>
<td>150 students</td>
<td>150 students</td>
<td>4</td>
</tr>
<tr>
<td>Fall 08</td>
<td>300 students</td>
<td>450 students</td>
<td>6</td>
</tr>
<tr>
<td>Spring 08</td>
<td>500 students</td>
<td>300 students</td>
<td>6</td>
</tr>
<tr>
<td>Summer 09</td>
<td>250 students</td>
<td>None</td>
<td>6</td>
</tr>
<tr>
<td>Fall 09</td>
<td>400 students</td>
<td>550 students</td>
<td>7</td>
</tr>
</tbody>
</table>
Is reform doing any good?

Compare student performance
Traditional (control) vs M&I (reform)

In class measurements
 + Concept inventories
 + Common final exam problems.
 + Performance in follow-on courses.

Out of class measurements
 + Think aloud protocol studies
Brief Electricity & Magnetism Assessment (BEMA)

- Standardized multiple choice test
 • (31 questions)
- Qualitative and short quantitative questions
- Covers topics *common to both M&I and traditional course*
- Administer “pre-test” at beginning of course, “post-test” at end, measure gains
Semester 2 (E&M) Concept Inventory
Reform Outperformance

![Bar chart showing average BEMA scores for different institutions and teaching methods.](chart.png)

- **GT**
 - M&I N=612
 - TRAD N=1246

- **Purdue**
 - M&I N=76
 - TRAD N=78

- **NCSU**
 - M&I N=79
 - TRAD N=48

- **CMU**
 - M&I N=73
 - TRAD N=116

Error bounds (95% Confidence Intervals) are ±2 σ.

Average BEMA Score (%) (Post-Instruction)
Score Distributions at Georgia Tech

Pre-test
\[\bar{X}_{\text{MI}} = 25.9\%, \quad \bar{X}_{\text{TRAD}} = 24.8\% \]

Post-test
\[\bar{X}_{\text{MI}} = 58.2\%, \quad \bar{X}_{\text{TRAD}} = 46.1\% \]
Concept Inventory—Semester 1 (Mechanics)

Force Concept Inventory (FCI)
- Standardized multiple choice test
 - (30 questions)
- Qualitative questions
- Administer “pre-test” at beginning of course, “post-test” at end, measure gains
Semester 1 (Mech.) Concept Inventory
Traditional Outperformance

Georgia Tech

Error bounds
are 95% Confidence Intervals
(± 2 σ)

Average FCI Score (%)
Common Final Exam Questions
Similar (Dismal) Performance

Percentage of “Mostly Correct” Responses

<table>
<thead>
<tr>
<th>Question</th>
<th>TRAD.</th>
<th>M&I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mech. 1</td>
<td>13%</td>
<td>26%</td>
</tr>
<tr>
<td>Mech. 2</td>
<td>29%</td>
<td>24%</td>
</tr>
<tr>
<td>Mech. 3</td>
<td>7%</td>
<td>8%</td>
</tr>
<tr>
<td>Mech. 4</td>
<td>21%</td>
<td>17%</td>
</tr>
<tr>
<td>Mech. 5</td>
<td>59%</td>
<td>49%</td>
</tr>
<tr>
<td>E&M 1</td>
<td>10%</td>
<td>17%</td>
</tr>
<tr>
<td>E&M 2</td>
<td>22%</td>
<td>39%</td>
</tr>
<tr>
<td>E&M 3</td>
<td>20%</td>
<td>29%</td>
</tr>
</tbody>
</table>
Average GPA in Advanced Courses
Similar Performance

COE 2001 (Engineering Statics)
(Requires Mechanics Prerequisite)
 Trad: 2.79 (+/- 0.05) (N=1695)
 M&I: 2.81 (+/- 0.11) (N=359)

ECE 3025 (Electromagnetics)
(Requires E&M Prerequisite)
 Trad: 2.93 (+/- 0.15) (N=144)
 M&I: 2.95 (+/- 0.28) (N=24)
Adopt Semester 2 reform, Hybridize Semester 1 (Final Decision Pending)

+ Faculty Discussion:
 * Not (strongly) data-driven
 * Testimony of participating faculty given significant consideration.
 * Computation/Visualization: accepted prima facie as significantly positive
Lessons Learned: Implementing Sustainable Reform in Large Lecture Courses
More and Better Measurements NEEDED

+ Measurements are difficult

+ Beware of overreliance on particular measurements (Concept Inventories)
E&M Concept Inventory: BEMA

Reform Outperformance

Error bounds (white) are 95% Confidence Intervals (± 2 σ)

GT
- M&I N=612
- TRAD N=1246

Purdue
- M&I N=76
- TRAD N=78

NCSU
- M&I N=79
- TRAD N=48

CMU
- M&I N=73
- TRAD N=116

Average BEMA Score (%) (Post-Instruction)
E&M Concept Inventory: CSEM
Traditional Outperformance
Georgia Tech (Fall 09)

- TRAD N=282
- M&I N=517
- TRAD N=428
- M&I N=524

Error bounds are 95% Confidence Intervals (± 2 σ)
Are BEMA & CSEM Equivalent?

S. Pollock, PERC Proceedings (2008): Yes, (for same (Traditional) curriculum)

Equivalent for different curricula?

More (and different) measurements needed
More Interdisciplinary Work NEEDED

+ Content specialists largely ignorant of psychological, social, cognitive dimensions of teaching and learning
Example: Cognitive-Science-Inspired: Curricular Reform

Core Mechanics Knowledge

PRINCIPLES
Momentum
Energy
Angular Momentum

Motion
\(t, \Delta t, \vec{v}, \Delta \vec{v}, a, \vec{p}, \Delta \vec{p} \)

Interactions
\(\vec{F}, \text{potential energy} \)

Chabay & Sherwood (2010); Reif (2008)
Think-aloud protocol study
Semester 1 Concept Inventory

+ Individual interview of volunteers who work problems while narrating their thoughts
+ Analysis of interview Audio/Video records (Work in progress)

Average % Score of Concept Inventory Questions
Think-aloud protocol study
FCI Concept Inventory

+ RESULT:
NO M&I participants used a Fundamental Principle!

Average % Score of Concept Inventory Questions
Principle-based Curriculum for Novices?

M&I course exercises (homework, labs, etc) developed in Traditional way

Develop exercises using cognitive science systematically?

Interdisciplinary work needed
Task analysis

• Determine the knowledge and procedures needed to solve classes of problems
 – May be different for novices and experts!
 – Experts may have “hidden” or “compiled” knowledge

• “Professional novice” (Catrambone)
 – Examines expert working on physics problems from M&I course
 – Reconstructs necessary steps
 – Builds general procedure

• Compare student problem solving to task analysis
 – Do they follow same procedure?
 – What pieces are they missing?
Tighter Integration of Computation/Visualization NEEDED

+ M&I Student Experience: Lab only

+ Significant Computational Anxiety
Computational Homework

+ Modify lab-developed code to investigate new questions

+ Problems highly-customized to each student

+ Heavy use of visualization to build student intuition

Weather Balloon Trajectory
blue arrow represents \vec{F}_{net}
Computational Homework

For more details:

See Talk GG04: (TUESDAY 7:36pm, Washington I) Marcos Caballero
“Computational Exercises in Introductory Mechanics”
(Session GG: Teaching with Technology III)
Summary

Curriculum Implementation Keys:
+ Local expert (teaching postdoc)
+ Go slow (build infrastructure)

Strengthen Sustainability:
+ More and better measurements
+ Improve exercises (w/ Cognitive Science)
+ Tighter integration of computation

http://www.physics.gatech.edu/gtper