Computational exercises in introductory mechanics

Marcos Caballero, Michael Schatz, and Matthew Kohlmyer*

School of Physics, Georgia Institute of Technology
*Department of Physics, North Carolina State University

February 16, 2010

caballero@gatech.edu
www.physics.gatech.edu/gtper

Supported by NSF DUE-0942076
Mechanics at GT

Two Courses
- A course based on Knight
- The Matter and Interactions course (M&I)

Boundary Conditions for Intro Mechanics (M&I)
- ~ 800 students per semester take introductory mechanics
- 83% engineering, 17% science majors
- Large classroom setting (150-250 students)
 - 3 hours of lecture (with “clicker” questions)
 - Online homework system (for M&I - WebAssign)
- Labs/Recitations (25-40 students)
 - 3 hour lab/recitation
 - Experimental labs
 - Computer modeling labs
 - Group problems
The Matter and Interactions Course

How does M&I differ from the “typical” physics course?

- Emphasizes a principles based approach (Impulse-Momentum Theorem, Energy Principle, Angular Momentum Principle)
- Introduces the ball and spring model of matter and connects microscopic to macroscopic (speed of sound, temperature)
- Uses modern tools (simulation and visualization)
 - Iterative view of motion (Non-constant forces)
 - Computer modeling laboratories

www.matterandinteractions.org
Why Computer Modeling Homework?

Why Computer Modeling?

- Third pillar of modern science and engineering
 - theory, experiment, computation
- Explore systems that are too difficult to solve in closed-form
 - Effects of air resistance
- Simulate experiments that are impossible to perform in a lab
 - Elliptical orbit, 3 body problem
- Visualization of the problem
 - observing the motion, physical vectors; plotting of energy-time series

On Homework Assignments?

- Homework is generally “end-of-chapter” work, online
- Randomization does not deter “short-cuts” (Google)
- Significant fraction of students never write programs
- Not a novelty of the lab
Nuts and Bolts

Method of Implementation

- Homework based on Computer Modeling Labs
 - Numerical Integration: interactions known → reconstruct motion
 - Numerical Differentiation: motion known → reconstruct interactions

- Implement via WebAssign
 - Generate ~ 500–1000 realizations
 - store initial conditions and solutions
 - Randomize realization per student
 - problem is solved numerically

- Types of Homework Questions
 - Numeric Questions
 - change initial conditions; randomized for each student
 - graded for accuracy
 - Visualization Questions
 - qualitative questions (e.g., directions of forces/kinematic quantities)
 - confront misconceptions
A Typical Week

An Example - Forces on a Weather Balloon

- Initial program written during lab
 - Read position data to determine \vec{F}_{net}
 - Reproduce trajectory
 - Using arrows, visualize \vec{p}, $\Delta \vec{p}$, and \vec{F}_{net}
 - Print \vec{r}, \vec{v}

- Homework gives students new position data
 - Reproduce work done in lab
 - Decompose net force, $\vec{F}_{\text{net}} ||$ and $\vec{F}_{\text{net}} \perp$ and visualize with arrows
 - Quantitative questions, \vec{r}, \vec{v}
 - Qualitative questions, directions of \vec{p}, $\Delta \vec{p}$, \vec{F}_{net}, $\vec{F}_{\text{net}} ||$ and $\vec{F}_{\text{net}} \perp$

Weather Balloon Trajectory
blue arrow represents \vec{F}_{net}
So...how are students doing?

Instructor Perspective
- Minimal changes to programs thus far
- Minor hiccups caught early on
 - installation issues, give students sample sets
- Students were slipping by without writing programs
 - i.e., before Spring 2010

Student Perspective
- Students score slightly lower on average
 - Computational Questions: 84.4 ± 0.1 %
 - Analytic Questions: 90.6 ± 0.1%
- Group of students (≈ 5%) with consistent low scores
 - difficulty with programming?
 - ignoring questions?
Assessment

Where are the measurements?

- Attitudinal
 - Colorado Learning Attitudes about Science Survey
 - GT designed Attitudes/Impressions of Programming

- Qualitative Understanding
 - Force Concept Inventory
 - Exam Questions

- Computational Abilities
 - Exam Questions
 - Final Exam programming assignment
Closing Remarks

Future Work

- Compare attitudes about science to M&I without computational exercises
- Detailed comparison of qualitative understanding to other courses
- Novel problem study based on Kohlmyer

Thanks

- Dr. Ed Greco
- Daniel Borrero, Huseyin Kurtuldu
- Juan-Jose Lietor-Santos, Adam Perkins